Edge-Optimized À-Trous Wavelets for Local Contrast Enhancement with Robust Denoising

Johannes Hanika, Holger Dammertz, Hendrik Lensch | September 17, 2011
Motivation: Edge-Aware Image Processing

- ongoing research:
- look transfer via bilateral filtering (Dae, Paris and Durand 2006)
Motivation: Edge-Aware Image Processing

- ongoing research:
- multi scale decomposition by solving a linear system (Farbman et al. 2008)
Motivation: Edge-Aware Image Processing

- ongoing research:
- colorization via edge-avoiding wavelets (Fattal 2009)
Motivation: Edge-Aware Image Processing

- ongoing research:
- local contrast via local histograms (Kass 2010)
Motivation: Edge-Aware Image Processing

- ongoing research:
- via domain transform (Gastal and Oliveira 2011)
Previous Work

- all based on multiscale decompositions:
 - iteratively applying a bilateral filter
 - lots of techniques to speed it up
 - still high memory footprint and/or low performance
 - high quality by solving a linear system
 - not meant to be high performance
 - fastest methods based on decimated wavelets (Fattal 2009)
Previous Work

- decimated wavelets fail to capture edges at all scales:
Previous Work

- decimated wavelets fail to capture edges at all scales:
Previous Work

- because coarse coefficients are sparse
Previous Work

- use à-trous wavelet

 \[
 \begin{array}{c}
 \bullet \quad \bullet \\
 \bullet \quad \bullet \\
 \bullet \quad \bullet \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 i=0 \\
 i=1 \\
 i=2 \\
 \end{array}
 \]

- results in a full image (not decimated) per step
- ⇒ the transformation is *shift invariant*
Previous Work

- à-trous wavelet decomposition
 1. level $i = 0$ starts with the input signal $c_0(p)$
Previous Work

- à-trous wavelet decomposition
 1. level $i = 0$ starts with the input signal $c_0(p)$
 2. compute next base layer (convolution with holes)

\[
c_{i+1}(p) = \frac{1}{k} \sum_{q \in \Omega} h_i(q) \cdot c_i(p)
\]
Previous Work

- à-trous wavelet decomposition
 1. level $i = 0$ starts with the input signal $c_0(p)$
 2. compute next base layer (convolution with holes)

$$c_{i+1}(p) = \frac{1}{k} \sum_{q \in \Omega} h_i(q) \cdot c_i(p)$$

 3. compute next detail layer (difference)

$$d_i(p) = c_i(p) - c_{i+1}(p)$$
Previous Work

- à-trous wavelet decomposition

1. level $i = 0$ starts with the input signal $c_0(p)$
2. compute next base layer (convolution with holes)

$$c_{i+1}(p) = \frac{1}{k} \sum_{q \in \Omega} h_i(q) \cdot c_i(p)$$

3. compute next detail layer (difference)

$$d_i(p) = c_i(p) - c_{i+1}(p)$$

4. if $i < N : i := i + 1$; goto 2
Previous Work

- à-trous wavelet decomposition

1. level $i = 0$ starts with the input signal $c_0(p)$
2. compute next base layer (convolution with holes)

$$c_{i+1}(p) = \frac{1}{k} \sum_{q \in \Omega} h_i(q) \cdot c_i(p)$$

3. compute next detail layer (difference)

$$d_i(p) = c_i(p) - c_{i+1}(p)$$

4. if $i < N : i := i + 1$; goto 2
5. $\{d_0, d_1, ..., d_{N-1}, c_N\}$ is the wavelet transform of c.
Previous Work

- à-trous wavelet decomposition edge-aware version

 1. level $i = 0$ starts with the input signal $c_0(p)$
 2. compute next base layer (convolution with holes)
 \[
 c_{i+1}(p) = \frac{1}{k} \sum_{q \in \Omega} h_i(q) \cdot c_i(p) \cdot w_\sigma(p, q)
 \]
 3. compute next detail layer (difference)
 \[
 d_i(p) = c_i(p) - c_{i+1}(p)
 \]
 4. if $i < N : i := i + 1$; goto 2
 5. \{ $d_0, d_1, \ldots, d_{N-1}, c_N$ \} is the wavelet transform of c.
Previous Work

- à-trous wavelet decomposition edge-aware version

1. level \(i = 0 \) starts with the input signal \(c_0(p) \)
2. compute next base layer (convolution with holes)

\[
c_{i+1}(p) = \frac{1}{k} \sum_{q \in \Omega} h_i(q) \cdot c_i(p) \cdot w_{\sigma_r}(p, q)
\]

3. compute next detail layer (difference)

\[
d_i(p) = c_i(p) - c_{i+1}(p)
\]

4. if \(i < N \): \(i := i + 1 \); goto 2
5. \(\{d_0, d_1, ..., d_{N-1}, c_N\} \) is the wavelet transform of \(c \).

- synthesis: simply add up base and detail layers

\[
c = c_N + \sum_{i=0}^{N-1} d_i.
\]
Decomposition

- example coarse and detail layers

\[
\begin{array}{cccccc}
 c_4 & d_1 & d_2 & d_3 & d_4 \\
\end{array}
\]
Synthesis for Local Contrast

- add up boosted detail layers

\[c = c_N + \sum_{i=N-1}^{0} \beta_i \cdot d_i. \]
Observation

- how to choose good edge weights $w_{\sigma_r}(p, q)$?
Observation

- how to choose good edge weights $w_{\sigma_r}(p, q)$?

- too strong edge weights: gradient reversals
Observation

- how to choose good edge weights $w_{\sigma_r}(p, q)$?

- too strong edge weights: gradient reversals
- too soft edge weights: halos
Observation

- how to choose good edge weights $w_{\sigma_r}(p, q)$?

- too strong edge weights: gradient reversals
- too soft edge weights: halos
- Kass and Solomon (2010) do explicit diffusion on coarse buffer as post
Decomposition is fast!

- ⇒ optimization by synthesis to acquire σ_r per pixel!
- stay in wavelet framework
Edge-Optimized Decomposition

- at each scale, do several decompositions using σ_j^r, $j = 0, 1, ...$
Edge-Optimized Decomposition

- at each scale, do several decompositions using σ_j^r, $j = 0, 1, ...$
- compute error measure e_j
 \[
e_j = d_{i,j}^2 + \lambda \cdot \|\nabla c_{i,j}\|
 \]
- prefer low energy in details d and smooth base layer c
Edge-Optimized Decomposition

- at each scale, do several decompositions using $\sigma^j_r, \ j = 0, 1, \ldots$
- compute error measure e_j

$$e_j = d_{i,j}^2 + \lambda \cdot \| \nabla c_{i,j} \|$$

- prefer low energy in details d and smooth base layer c
- choose per-pixel edge weight

$$\sigma^k_r(p) : k = \arg\min_j \{ e_j \}$$

- details how to make noisy estimates of ∇c stable in the paper
Edge-Optimized Decomposition

- error images e_j

- choice of σ_r and input image
Decomposition Quality

input

edge-avoiding

colored output for visualization as (Farbman 08) bilateral

(Farbman 08) WLS
edge-optimized
Decomposition Quality

input

edge-avoiding

colored output for visualization as (Farbman 08)

(Farbman 08) WLS

text: edge-optimized
comparable quality, orders of magnitude faster

bilateral
Synthesis with Denoising

- synthesis after local contrast boost also boosts noise!
Synthesis with Denoising

- synthesis after local contrast boost also boosts noise!
- wavelet framework \Rightarrow can use robust noise variance estimate and BayesShrink threshold
 \[
 d'_i = \max\left\{0, |d_i| - T\right\} \cdot \text{sign}(d_i)
 \]
 and $c_{i-1} = c_i + \beta \cdot d'_i$
- details in the paper
Denoising Quality

input 5% noise

à-trous PSNR 32.5

EAW PSNR 39.1

EOW PSNR 39.8
Denoising Quality

input 10% noise

à-trous PSNR 26.3

EAW PSNR 34.6

EOW PSNR 35.9
Denoising Quality

input 40% noise

à-trous PSNR 26.5

EAW PSNR 15.0

EOW PSNR 19.6
Performance (CPU)

<table>
<thead>
<tr>
<th>algorithm</th>
<th>wallclock</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAW (Fattal 09)</td>
<td>0.088s</td>
</tr>
<tr>
<td>(core i7, $\alpha = 1$)</td>
<td></td>
</tr>
<tr>
<td>EAW (Fattal 09)</td>
<td>0.296s</td>
</tr>
<tr>
<td>(core i7, $\alpha = 0.8$)</td>
<td></td>
</tr>
<tr>
<td>this paper</td>
<td>0.197s</td>
</tr>
<tr>
<td>(core i7)</td>
<td></td>
</tr>
</tbody>
</table>

- 1 megapixel, 3 scales, 4 channels per pixel Lab data
- core i7 CPU: 8 threads on 4 cores
- (Fattal 09) with $\alpha = 1$ removes expensive exponentiation
Performance (GPU)

<table>
<thead>
<tr>
<th>ms</th>
<th>number of σ_r tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1 scale</td>
<td>19</td>
</tr>
<tr>
<td>2 scales</td>
<td>27</td>
</tr>
<tr>
<td>3 scales</td>
<td>35</td>
</tr>
<tr>
<td>4 scales</td>
<td>42</td>
</tr>
<tr>
<td>5 scales</td>
<td>55</td>
</tr>
</tbody>
</table>

- edge-optimized wavelet transform on a GTX480 for a one megapixel image
- numbers are in milliseconds
Results (Local Contrast)

▷ (video)
Limitations

- high contrast, axis aligned changes (in hdr images) can lead to aliasing:

![Image]

- transparently reduced by our optimization (both via d^2 and smoothness term)
- technique to further ameliorate that in the paper
- not the world’s best denoising technique, but helps suppress noise enhancement during local contrast step
Summary

- edge avoiding à-trous wavelets are useful!
- they can be fast (suitable for video processing)
- and achieve high-quality coarse/detail decompositions
 - avoid gradient reversals
 - avoid halos
 - better match the assumptions of BayesShrink denoising
- parameter free, if you want it
- super simple to implement
Thank you for listening!

- some of the code is available at http://darktable.sf.net (hardcore SSE optimized + OpenCL)
- thanks to Edouard Gomez and Rostyslav Pidgorny for the fast SSE version!