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Abstract

In this paper we extend the edge-avoiding à-trous wavelet transform for local contrast enhancement while avoiding
common artifacts such as halos and gradient reversals. We show that this algorithm is a highly efficient and robust
tool for image manipulation based on multi-scale decompositions. It can achieve comparable results to previous
high-quality methods while being orders of magnitude faster and simpler to implement. Our method is much more
robust than previously known fast methods by avoiding aliasing and ringing which is achieved by introducing a
data-adaptive edge weight. Operating on multi-scale, our algorithm can directly include the BayesShrink method
for denoising. For moderate noise levels our edge-optimized technique consistently improves separation of signal
and noise.

1. Introduction
The use of edge-preserving operators for image manip-
ulation has become a common tool in image processing
and computer graphics applications. Example applications
are tone mapping [Sch94, DD02a], general image edit-
ing [KRFB06] and image fusion [ED04]. These operations
are an important part of modern photo manipulation tools.
Since real images exhibit features at multiple scales it is of
great importance to allow image manipulation in scale space
which is enabled by image decomposition in various layers.

In this paper, we introduce edge-optimized à-trous
wavelets for this purpose and extend edge-avoiding wavelets
by automatic, locally adaptive edge-weights such that en-
ergy is pushed into the coarser layers (see Figure 1). This
has been demonstrated to reduce halos and ringing arti-
facts [Fat09, KS10], and we also show it better matches the
assumptions of denoising via wavelet shrinkage. Our method
is a lot quicker than previous high-quality approaches while
giving comparable results.

Fattal et al. [FAR07] present a multi-scale method to com-
bine multi-light images using an approximation of bilat-
eral decomposition using à-trous wavelets. They use one
global hand-chosen edge weight that increases quickly for
different scales to avoid aliasing, inherently limiting the
flexibility of the multi-scale analysis. In [FFLS08], the au-
thors use quadratic optimization least squares with pre-
conditioned conjugate gradient to achieve high quality de-
tail/base layer decomposition results. While robust, their
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Figure 1: Coarse images ci and corresponding detail im-
ages di for standard à-trous wavelets (STD) and the edge-
optimized transform (EOW). Details are multiplied by 3 for
better display. Much of the energy from the edges is trans-
ferred into the coarse images for the edge-optimized trans-
form, keeping more of the core signal.

method is quite time-consuming, requiring about 3 seconds
per megapixel. A general framework for edge-preserving de-
composition based on decimated wavelets was presented by
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Fattal [Fat09]. In contrast to the à-trous algorithm, decimated
wavelets reduce the image resolution at each level. The pro-
posed method is fast (≈ 200 ms per megapixel in our quad-
core implementation) but as we show in Section 4 the use
of decimated wavelets can lead to severe artifacts due to
sparse basis functions in higher levels. Another high-quality
method is based on smoothed local histogram filters [KS10].
It allows for quick computation of derivatives and integrals
of locally-weighted histograms even with large neighbor-
hoods. Edge-preserving smoothing is supported but it can re-
sult in over-sharpening of edges that are visible as gradient
reversals when the contrast is enhanced. The authors solve
this problem by adding a selective diffusion per decompo-
sition layer. They report a performance of about 1.0 second
per megapixel for their GPU implementation. We achieve
comparable results in about 0.16 seconds.

The main contributions of our paper are a multi-scale de-
composition based on edge-optimized à-trous wavelets that
features robust separation in detail coefficients and coarse
images, locally adaptive (per-pixel) edge-weights, improved
denoising using BayesShrink, and a fast and simple to im-
plement algorithm. The robust detail separation allows us
to avoid halos and gradient reversals which are a common
problem in contrast enhancement. The optimization of the
edge-weights improves the decomposition and keeps more
of the important edge information in the coarse layers (see
Figure 1). Due to the use of a wavelet transform we can eas-
ily incorporate BayesShrink to robustly separate noise from
signal (in contrast to a decomposition based on the bilateral
filter). In addition, due to the edge-optimized decomposi-
tion our method improves the denoising quality for moderate
noise levels.The run time performance is about an order of
magnitude faster than previous approaches producing simi-
lar image quality (see Section 4).

2. Background
Layer decomposition, where the input image is separated
into a locally smoothed base layer and a detail layer that
contains the deviation to the original, allows for modify-
ing both layers individually enabling fine-grained control in
image manipulation, e.g. scaling the detail layer for con-
trast enhancement and then recombining the modified lay-
ers. Simply using linear filters for the decomposition can
produce artifacts near edges when altering the detail layer.
These artifacts can be reduced by edge preserving non-linear
filters like anisotropic diffusion [PM90] or the more com-
monly used bilateral filter [TM98]. Recombination with the
base layer introduces either ringing (when the base layer
is too smooth) or gradient reversal (when the base layer is
too sharp) [Sch94]. To correctly deal with image features at
different spatial extends a multi-scale representation can be
achieved by recursive decomposition of the resulting base
layer.

Local Contrast Enhancement A high-quality algorithm
for local contrast enhancement is presented in [FFLS08].

The authors propose an edge-preserving multi-scale image
decomposition where the information of edges is optimized
using weighted least squares. This method effectively re-
moves the problem of halos and gradient reversal. Our ap-
proach is similar to their approach in that we use a similar
error measure. But instead of solving a minimization prob-
lem iteratively we embed the problem into the multi-scale
edge-avoiding wavelet framework, which gives us a similar
level of control while allowing orders of magnitude faster
processing.

Bilateral Filter and Edge-Avoiding Wavelets As the bi-
lateral filter (BLF) is is quite expensive to compute for large
filter sizes many acceleration methods have been proposed
(e.g. [DD02b,PD09,AGDL09,ABD10]). While the bilateral
filter is very good at removing noise it is shown in [FFLS08]
that applying only one bilateral filter cannot extract features
at all scales equally well, and repeated application with ex-
tended kernel size to achieve multi-scale is quite computa-
tionally expensive.

In [Fat09], decimating edge-avoiding wavelets are intro-
duced. They extend second-generation wavelets [Swe97] by
an edge-crossing function corresponding to the range filter
in BLF to allow for edge-preserving multi-scale decomposi-
tions and modifications.

Undecimated Wavelet Transformation The discrete un-
decimated wavelet-transform is a useful tool for multi-scale
image manipulations but a naive implementation requires the
convolution with increasing filter sizes per level. In [Mal89],
this problem is removed by the introduction of decimation
(downsampling). Fast filter transforms [Bur81] are adapted
for the use with wavelets in [HKMMT89,Dut89,Mal98] and
significantly speed up the computation of undecimated trans-
forms. The idea of these filters is to contain always a constant
number of non-zero coefficients per level. These coefficients
are spread by a factor of 2level . This concept is known as
the algorithme à-trous ("with holes") [She92]. In [FAR07],
the à-trous algorithm is used to compute a fast multiscale bi-
lateral decomposition, approximating the bilateral filter but
risking aliasing. In [DSHL10], the edge-avoiding à-trous al-
gorithm is used for an efficient tri-lateral image smooth-
ing that uses additional information to influence the edge
weights. As our work is based on the edge-avoiding à-trous
algorithm we will explain the details in the next section.

2.1. Edge-Avoiding À-Trous
Computing the basic à-trous wavelet transform (without
edge weights) is an iterative process where at each scale the
next base layer ci+1 is obtained by discrete convolution with
a Gaussian hi while the detail layer di captures the difference
to the original. For the multi-scale analysis the filter size is
doubled in each iteration. The core idea of the algorithme
à-trous for saving compute time is to keep the samples for
evaluating the convolution ∗ constant in each iteration and
to increase only the distance between the samples by 2i in
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Figure 2: Visualization of the à-trous wavelet transform pro-
cess. The first row is the input image. The second row eval-
uates a convolution with a filter mask h0 with support of 5
pixels. The third row shows the filling-in of zeros (holes) into
the filter mask for the next iteration. Note that this process is
undecimated, i.e. it computes a full resolution image at each
iteration.

order to achieve the increasing filter size. The algorithm per-
forms the following steps:

1. Level i = 0 starts with the input signal c0(p)
2. ci+1(p) = ci(p)∗hi (next base layer)
3. di(p) = ci(p)− ci+1(p) (next detail layer)
4. if i < N : i := i+1; goto 2
5. {d0,d1, ...,dN−1,cN} is the wavelet transform of c.

The reconstruction is then achieved by simply adding the
detail coefficients back to the results image cN from the last
iteration

c = cN +
0

∑
i=N−1

di. (1)

Note that this transformation is undecimated, i.e. each level
produces detail coefficients in the original image resolu-
tion. The Filter h is based on a B3 spline interpolation b =
( 1

16 ,
1
4 ,

3
8 ,

1
4 ,

1
16 ) [Mur97], approximating a Gaussian, and at

each level i > 0 the filter doubles its extent by filling in 2i−1

zeros between the initial entries

ci+1(p) = ci(p)∗hi (2)

=
2

∑
y=−2
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(
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(

2ix
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))

.

Thus, the number of non-zero entries remains constant. This
process is illustrated in Figure 2.

Extending this algorithm to edge-avoiding à-trous just
requires to add a data-dependent weighting function wσr ,
which, as in the bilateral filter, is based on value difference
of color or luminance

wσr (p,q) = e
‖ci(p)−ci(q)‖

2

σr . (3)

The discrete convolution in step 2 becomes

ci+1(p) =
1
k ∑

q∈Ω

hi(q) ·wσr (p,q) · ci(p), (4)

with Ω denoting the positions of non-zero coefficients in hi.
A simple edge-avoiding à-trous wavelet decomposition step
can be calculated very quickly (in 5 ms per megapixel on a
GTX480).

3. Fast and Robust Local Contrast
In this section, we describe our edge-optimization algorithm
for better local contrast enhancement avoiding halos and gra-
dient reversals. As a wavelet scheme, it consists of decompo-
sition and synthesis. In the first step, the edge weights σr are
optimized per pixel. Denoising and local contrast enhance-
ment are done during synthesis.

3.1. Decomposition
To better represent the edges in the coarse coefficients c, we
will choose locally adaptive filter ranges σr. At each layer
this is done by computing multiple decompositions with dif-
ferent parameters and then choosing optimal parameters for
each pixel. More precisely, for each wavelet scale i, iterate
through a list of tentative edge parameters σ

j
r , j = 0... jmax.

For each j we separate the current image into coarse ci, j and

detail di, j using the current σ
j
r as global edge weight. The

resulting decomposition is used to evaluate an error image

e j = d2
i, j +λ · ‖∇ci, j‖, (5)

which penalizes pushing information to the detail layer (first
term) and prefers smooth base images (second term). The
step tries to keep as much of the information of the input im-
age in the coarse layer while removing all detail and noise
that cannot be represented properly at the next scale. This
error measure is similar to the one used by Farbmann et
al [FFLS08] for quadratic optimization. In our framework
it is sufficient to find the optimal parameter locally at each
scale rather than performing a costly global optimization.
The mixture parameter λ was fixed at λ = 0.003 for all im-
ages in this paper. Since this error measure will be noisy, we
evaluate it over an area of the same size as the à-trous sup-
port on this scale, (i.e. (2i ·5)2) using 25 samples on a regular
grid with Cranley Patterson rotation [CP76] to decorrelate
adjacent pixels.

After all j have been processed at scale i, we search for the
minimum error e j per pixel and determine the optimal edge

weight σk
r(p) with k = argmin j{e j}. In order to avoid too

drastic changes in the edge weights, the per-pixel weights
are smoothed once into a buffer z

z = σk
r ∗h0. (6)

Finally, the actual wavelet decomposition step takes place
as in Section 2.1, but taking the locally optimal parameters
σr(p) from the blended buffer z at each pixel’s position.

We found jmax = 4 sufficient for all images in this pa-
per, and chose a simple linear sampling of the interval
[0,4∗(i+1)). More sophisticated methods such as Metropo-
lis sampling [MRR∗53] or simulated annealing [KGV83]
might lead to even better results.

3.2. Synthesis
The synthesis step without denoising is straight forward and
consists simply of adding up the coarse base layer and the
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potentially scaled and soft thresholded details at a given
scale to obtain the next finer base layer.

As we are working with wavelets, results from wavelet
theory such as BayesShrink [CYV00] directly transfer to
our algorithm. BayesShrink is a soft thresholding method
designed for a wide range of input signal priors, such as
Laplacian and Gaussian distributions assuming additive iid
Gaussian noise.

As a consistent and robust estimator for the noise standard
deviation, we use the median absolute deviation (MAD) over
all pixels at the finest level, and obtain

σn =
median(|d0|)

0.6745
. (7)

Now we iterate for each wavelet scale, this time starting at
the coarsest level i = imax...0. Given the signal variance σ2

y,i,
the soft shrinkage threshold T is calculated as in [CYV00]
to minimize the risk of destroying the signal, by

T =
σ2

n,i
√

max{0,σ2
y,i −σ2

n,i}
(8)

with σ2
y,i =

1
N ∑

p
di(p)2 and σn,i = σn ·2

−i
.

With this threshold, shrinkage and contrast boost is applied
to the detail coefficients at the same time, by setting

d′

i = max{0, |di|−T} · sign(di) (9)

and ci−1 = ci +β ·d′

i , (10)

where β is the contrast boost parameter. In case denoising is
not wanted, only the last step is relevant with d′ = d.

Our edge-optimized wavelet scheme tends to move as
much edge information to the coarser levels as possible, so
the detail coefficients even correspond more to the Gaussian
distribution than they would with usual wavelet transforma-
tion. Also, the edge data will not be affected by thresholding
this way, resulting in a better PSNR of the denoised results.

4. Results
We have implemented the above algorithm in CUDA and
perform all our measurements on an NIVIDA GTX480
GPU. We show comparison images with the bilateral filter,
the decimated wavelet transform, the high-quality weighted
least squares method presented in [FFLS08], and the local
contrast enhancement method based on smoothed local his-
tograms and selective edge diffusion [KS10]. In addition, we
show results of denoising with BayesShrink.

À-trous wavelets can be used to approximate the behav-
ior of the bilateral filter. This behavior has already been rec-
ognized by [FAR07] and is an important difference to the
similarly fast (see Table 1) decimated edge-avoiding wavelet
transform [Fat09], as this has only very sparse coarse basis
functions, which can result in quite pronounced artifacts, see
Figure 3. When video animations are processed, this prob-
lem is much more apparent due to the sensitivity to transla-
tion of the decimated wavelets.

Figure 6: Subtle aliasing artifacts in the bottom left image
(closeup of our result from Figure 5) can be ameliorated by
choosing a point set which avoids collisions between differ-
ent scales, see drawing on top left: white circles indicate the
top right quarter of hi−1, and hi is in red (the whole point
set extends to all four quarters symmetrically). The offsets
from the regular à-trous sample positions are always just
one pixel, so no collision can take place. Top right is the
full image created with this point set.

Figure 4 shows common artifacts when the base layer
does not match the edge behavior of the input image well. If
an edge in the base layer is smoother than in the input, halos
around the enhanced edge can be seen (such as when using
standard unsharp masking). On the other hand, if the edge
is oversharpened, gradient reversals are the result [FFLS08].
Our approach can avoid both these artifacts in the entire im-
age independent of the strength and scale of an edge by op-
timizing edge weights σr locally on a per-pixel basis.

A comparison of edge-aware smoothing techniques with
respect to edges of varying contrast is presented in Figure 5.
The synthetic test patch has been taken from [FFLS08] for
better comparison with their method. The input image only
contains shades of gray, the comparison images have been
colorized using a gradient. The weak edge requires pro-
nouncing edge weights while the noisy area inside a patch
can only be smoothed over a larger region when the influ-
ence of edge weight is reduced. The standard à-trous re-
sult (second from left) uses global edge weights and has
thus problems with both sharp edges as well as smoothing
for example the red region. While the bilateral filter could
be applied recursively and with adaptive edge weights, too,
it’s execution time is so much longer than à-trous wavelets
that optimization is hardly feasible in reasonable time. Our
result (rightmost) is comparable in quality to the weighted
least squares solution but can be evaluated a lot faster (this
image has three scales and five candidate σr and is com-
puted in 90ms/megapixel, compared to 3500ms/megapixel
and scale).

As already stated in [FAR07], edge-avoiding à-trous
wavelets can produce ringing artifacts. Compared to the
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Figure 3: Failure case for coarse decimated wavelets. Left: input photograph. Middle: decimated edge-avoiding
wavelets [Fat09] used for local contrast enhancement. Right: our result. The coarse basis functions of decimated wavelets
are just too far apart to capture the checker board. This becomes especially apparent when the input image is translated with
respect to the basis function, which results in flickering.

input image halos gradient reversals edge-optimized

Figure 4: Avoiding halos and gradient reversals in contrast enhancement. Selecting a too large σr results in halos, a too small
σr in gradient reversals. Optimized per-pixel edge weights avoid both artifacts.

input edge-avoiding bilateral WLS [FFLS08] edge-optimized

Figure 5: Importance of adaptive edge weights for edge-preserving smoothing of edges with different contrast. Leftmost is
the input image, the result images are actually black and white as well but are visualized using a colored gradient ramp to
emphasize the differences. The first image applies edge-avoiding wavelets with one global, very sharp edge weight. Due to its
global preset σr it fails to remove the high frequency noise and blurs the low contrast edge. The bilateral filter uses a spatial
Gaussian with σs = 12 and a range Gaussian with σr = 0.45. The weighted least squares result (WLS) [FFLS08] with α = 1.8
and λ = 0.35 performs significantly better by adapting the edge weights. Optimizing the per-pixel edge weights in our approach
yields comparable results with even slightly sharper region separation at only one tenth of the run time.
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input image local contrast enhanced

c1 c2 c3

z1 z2 z2

Figure 7: A flower with local contrast enhancement. The
bottom row shows the blended edge weight buffers (black
and white, white means smaller σr for better display) and
the resulting coarse base layers ci.

standard à-trous algorithm, edge-avoiding wavelets inher-
ently keep some higher frequencies in the base layer which
results in aliasing by the highly undersampled à-trous kernel.
Another source for aliasing is the inter-scale dependencies
of the sampling pattern: some samples of the enlarged filter
hi+1 coincide with the ones from hi. This way, very subtle
errors propagate all the way to the coarsest scale and pro-
duce objectionable ringing artifacts. While we don’t want
to spend more samples to avoid this, we can easily reduce
the inter-scale dependency by choosing a point set which
doesn’t share pixels between scales (see Figure 6), by off-
setting each sample location randomly by one pixel. Experi-
ments with specialized point sets created using dart throwing
to decorrelate the different scales did not improve the output
further. Full brute force search for point sets to optimize im-
age quality over a set of images using quasi-Monte Carlo
methods such as [GHSK08] might yield even better results.

In order to illustrate the adaptive edge weights, Fig-
ure 7 shows three scales of local contrast enhancement with
blended edge weights and the corresponding base layer.
While a lot of detail can be blurred away in flat areas, the
edges are detected by small local σr and correctly preserved.

A comparison to the high-quality histogram-based edge
diffusion method [KS10] is given in Figure 8. On the
GPU their approach consumes 0.83 seconds for the closest
mode filter plus 0.25 seconds for the selective diffusion per
megapixel. Using edge-optimization, we can create a com-
parable image with three wavelet scales in 0.087 seconds
per megapixel. If the edge weights can be set globally by
the user, the optimization step can be omitted and this image
would compute in 15 ms/megapixel.

More detailed timings can be found in Table 2 (just edge-

algorithm wallclock cpu time
[Fat09] (core i7, α = 1) 0.088s 0.430s
[Fat09] (core i7, α = 0.8) 0.296s 1.520s
this paper (core i7) 0.249s 1.740s

Table 1: Timings are median of three runs. To make the com-
parison as fair as possible, a megapixel has been processed
with three scales on a core i7 (8 threads) using the CPU
version of both algorithms, with only one tested σr. [Fat09]
with α = 1 removes an expensive exponentiation.

number of σr tested
1 2 3 4 5

1 scale 19 23 26 32 39
2 scales 27 35 43 51 63
3 scales 35 48 61 75 87
4 scales 42 61 81 102 120
5 scales 55 80 109 134 163

Table 2: Performance measurements for the edge-optimized
wavelet transform on a GTX480 for a one megapixel image.
Numbers are in milliseconds. Testing more σr currently in-
troduces a linear cost as each test calls a new kernel. Rear-
ranging the computation – the same data is used over and
over – could significantly accelerate this step. The slowest
configuration (five scales of wavelet bases tested for five pa-
rameters) takes 163 ms, which is in the range of our par-
allel CPU implementation of the decimated edge-avoiding
wavelets [Fat09] on a quad-core PC (200ms per megapixel).

optimized wavelet transform). Estimating the parameters for
BayesShrink denoising introduces approximately an addi-
tional 2ms per layer.

Figure 9 summarizes the results of including BayesShrink
in the à-trous framework. We compare standard à-
trous + BayesShrink with global edge-avoiding à-trous +
BayesShrink and our edge-optimized à-trous + BayesShrink
on images with 5%, 10%, and 40% added RGB noise. The
performance of edge-avoiding à-trous wavelets depends a lot
on the chosen global threshold. We chose a very small σr,
which results in sharp images but also pushes smooth edges
into the details, where they are attenuated by the wavelet
shrinkage. This explains why the PSNR in the 10% image
is even worse than the non-edge-aware version. 40% noise
results in too high variance due to noise as compared to the
signal, and thus the optimized edge weights detect noise as
edges and fail to produce good images.

5. Conclusion
Edge-optimized à-trous wavelets for multi-scale image de-
composition are a high-quality and fast alternative to cur-
rently used methods for image manipulation. They feature
robust denoising and contrast enhancement. With our locally
adaptive edge weights more signal information is robustly
kept in the coarse layers, avoiding the artifacts of halos and
gradient reversals in the context of local contrast enhance-
ment. Compared to decimated wavelet transforms which suf-
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Figure 8: Base layer and contrast enhanced version of a bird. From left to right: original, result from [KS10] with explicit se-
lective diffusion to match the edges in the base layer, our result with 3 scales and 2.5× and with 4× local contrast enhancement,
indicating robustness.

fer from a limited number of basis functions at the coarsest
level our à-trous -based approach keeps the full image reso-
lution, avoiding aliasing artifacts.

Our implementation is based on CUDA and is signifi-
cantly faster (more than one order of magnitude) even than
previous GPU methods with comparable quality and robust-
ness. We achieve real-time rates for camera images captured
at about one megapixel.

While our performance numbers are already practical
for some use cases such as interactive image editing, low-
dimensional parameter optimization and with some restric-
tions to interactive video, there is still room for improvement
such as reordering computations to avoid duplicate memory
accesses and to make better use of the shared memory on
the GPU. The robustness of edge-optimized à-trous wavelets
might in the future lend itself to tone mapping or image ab-
straction.
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input à-trous edge-avoiding edge-optimized
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10% noise closeup closeup closeup
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Figure 9: Denoising can be improved using edge optimized à-trous wavelets: Top row: 10% RGB noise added, bottom row: 40%
RGB noise added. From left to right: noisy image, standard à-trous wavelets, edge-avoiding à-trous wavelets with global pa-
rameters, and edge-optimized à-trous wavelets. When the global edge weight is not carefully chosen for edge-avoiding wavelets,
it tends to oversharpen, so the PSNR is low. The 40% noise image is a failure case for the edge-avoiding and edge-optimized
wavelets: since color differences are more pronounced there as in the actual edges, noise might be detected as edges and is
propagated to the base layer. All images are created with three wavelet scales.
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